





# Introduction to the baseline results of System Dynamics Modelling in the Lielupe River Basin

Henry D. Amorocho-Daza, MSc PhD Candidate





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003881.

## Nexus approach – Water, Energy, Food, Ecosystems













# Case study – Lielupe River Basin





A business as usual pathway shows an increase in greenhouse gases (GHG) emissions and nutrients runoff

Land use trade-offs: rainfed crops, renewable energy, preservation of meadows and pastures



# NXG 3rd Stakeholder Workshop



- International workshop held on the 15<sup>th</sup> June 2023 in Vilnius, Lithuania
- Identification and prioritisation of the basin's main issues and possible policies to address
  - Nutrients pollution
    - Nature-based solutions (e.g. wetlands)
  - Renewable energy transition
    - Solar and wind energy expansion
- Policy alternatives exploration



# Our approach – System Dynamics Models



| Feature     | Count |
|-------------|-------|
| Modules     | 8     |
| Equations   | 160   |
| Variables   | 220   |
| Months      | 420   |
| Simulations | 1000  |



# Example of submodules – Nature Based Solutions





# Nutrients pollution



### Policies to consider

- Implementing NBS to control nitrogen pollution
  - **Treatment 1** Woodchip Bioreactor (in-site)
  - Treatment 2 Constructed wetlands (regional – 3% of drained crop land)
  - Rapid expansion of nutrient control - 5% annual rate of implementation of NBS to control nitrogen pollution

















#### Both treatments

#### Only treatment 1 - bioreactor

Relative reduction of cumulative nutrient leaching (%)

#### Only treatment 2 - wetland

Relative reduction of cumulative nutrient leaching (%)

200

Relative reduction of cumulative nutrient leaching (%)





Average reduction – **42%** 50% of cases – (29%-54%)

Average reduction – **30%** 50% of cases – (15%-43%)  $1.18 \rightarrow 7.5$  $13.8 \rightarrow 20.1$  $26.5 \rightarrow 32.8$  $39.1 \rightarrow 45.4$  $51.7 \rightarrow 58.1$  $64.4 \rightarrow 70.7$ 7.5 
ightarrow 13.8 $20.1 \rightarrow 26.5$  $32.8 \rightarrow 39.1$  $45.4 \rightarrow 51.7$  $58.1 \rightarrow 64.4$ Mean - 27.6 Std. Dev. - 13.4 Min - 1.18 25% Percentile - 17.3 Median - 25.6 75% Percentile - 36.7 Interguartile Range - 19.3 Max - 70.7

Average reduction – **28%** 50% of cases – (17%-37%)



# Renewable energy and climate



### Policies to consider

- Expanding renewable energy (solar and wind)
  - 1% annual expansion following current trends
  - Wind energy potential dominates solar energy potential







Average reduction – 544M Tonn CO2 50% of cases – (500-590 Tonn CO2 )



# **Discussion points**

- Using combined NBS to control nutrient pollution shows promising results
  - It shows an expected 40% long-term reduction in nutrient loads for 2050. This is in the range of recently reported results of 30 years of nutrients control policy in Denmark (30-52%)
  - Using a single treatment shows positive results but lowers the efficiency of reduction and increases uncertainty.
  - How feasible is it to implement these alternatives? How can they be combined with other options to control nutrient pollution in the river basin?



# **Discussion points**

- Renewable expansion represents an opportunity to reduce CO2 emissions in the long term
  - Increasing renewables by 1% a year would be equivalent to reducing 550 tonnes of CO2 in 2050.
  - In our model wind energy dominates solar energy. From your experience, can you evidence such a trend in the river basin?





## Thanks for your attention!





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003881.